The dive response redefined: underwater behavior influences cardiac variability in freely diving dolphins

Author:

Noren Shawn R.1,Kendall Traci2,Cuccurullo Veronica3,Williams Terrie M.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA

2. Long Marine Laboratory, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA

3. The Dolphin Experience, PO Box F42433, Freeport, Grand Bahama Island, The Bahamas

Abstract

SUMMARYA hallmark of the dive response, bradycardia, promotes the conservation of onboard oxygen stores and enables marine mammals to submerge for prolonged periods. A paradox exists when marine mammals are foraging underwater because activity should promote an elevation in heart rate (fH) to support increased metabolic demands. To assess the effect of the interaction between the diving response and underwater activity on fH, we integrated interbeat fH with behavioral observations of adult bottlenose dolphins diving and swimming along the coast of the Bahamas. As expected for the dive response, fH while resting during submergence (40±6 beats min−1) was significantly lower than fH while resting at the water surface (105±8 beats min−1). The maximum recorded fH (fH,max) was 128±7 beats min−1, and occurred during post-dive surface intervals. During submergence, the level of bradycardia was modified by activity. Behaviors such as simple head bobbing at depth increased fH by 40% from submerged resting levels. Higher heart rates were observed for horizontal swimming at depth. Indeed, the dolphins operated at 37–58% of their fH,max while active at depth and approached 57–79% of their fH,max during anticipatory tachycardia as the animals glided to the surface. fH was significantly correlated with stroke frequency (range=0–2.5 strokes s−1, r=0.88, N=25 dives) and calculated swim speed (range=0–5.4 m s−1, r=0.88, N=25 dives). We find that rather than a static reflex, the dive response is modulated by behavior and exercise in a predictable manner.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3