Scaling of contractile properties of catfish feeding muscles

Author:

Van Wassenbergh Sam1,Herrel Anthony1,James Rob S.2,Aerts Peter13

Affiliation:

1. Department of Biology, Universiteit Antwerpen, Universiteitsplein 1,B-2610 Antwerpen, Belgium

2. Department of Biomolecular and Sport Sciences, Coventry University, James Starley Building, Priory Street, Coventry, CV1 5FB, UK

3. Department of Movement and Sports Sciences, Ghent University,Watersportlaan 2, B-9000 Gent, Belgium

Abstract

Biomechanical models are intrinsically limited in explaining the ontogenetic scaling relationships for prey capture kinematics in aquatic vertebrates because no data are available on the scaling of intrinsic contractile properties of the muscles that power feeding. However, functional insight into scaling relationships is fundamental to our understanding of the ecology, performance and evolution of animals. In this study, in vitro contractile properties of three feeding muscles were determined for a series of different sizes of African air-breathing catfishes (Clarias gariepinus). These muscles were the mouth closer musculus adductor mandibulae A2A3′, the mouth opener m. protractor hyoidei and the hypaxial muscles responsible for pectoral girdle retraction. Tetanus and twitch activation rise times increased significantly with size, while latency time was size independent. In accordance with the decrease in feeding velocity with increasing size, the cycle frequency for maximal power output of the protractor hyoidei and the adductor mandibulae showed a negative scaling relationship. Theoretical modelling predicts a scaling relationship for in vivo muscle function during which these muscles always produced at least 80% of their maximal in vitro power. These findings suggest that the contractile properties of these feeding muscles are fine-tuned to the changes in biomechanical constraints of movement of the feeding apparatus during ontogeny. However, each muscle appears to have a unique set of contractile properties. The hypaxials, the most important muscle for powering suction feeding in clariid catfish, differed from the other muscles by generating higher maximal stress and mass-specific power output with increased size,whilst the optimum cycle frequency for maximal power output only decreased significantly with size in the larger adults (cranial lengths greater than 60 mm).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3