Spatial mapping of integrin interactions and dynamics during cell migration by Image Correlation Microscopy

Author:

Wiseman Paul W.1,Brown Claire M.2,Webb Donna J.2,Hebert Benedict1,Johnson Natalie L.2,Squier Jeff A.3,Ellisman Mark H.4,Horwitz A. F.2

Affiliation:

1. Departments of Chemistry and Physics, McGill University, 801 Sherbrooke St. W. Montreal, Quebec H3A 2K6, Canada

2. Department of Cell Biology, University of Virginia, PO Box 800732, Charlottesville, VA 22908, USA

3. Department of Physics, Colorado School of Mines, 1523 Illinois Street, Golden, CO 80401, USA

4. Departments of Neurosciences and Bioengineering, and National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA

Abstract

Image correlation microscopy methodology was extended and used to determine retrospectively the density, dynamics and interactions of α5-integrin in migrating cells. α5-integrin is present in submicroscopic clusters containing 3-4 integrins before it is discernibly organized. The integrin in nascent adhesions, as identified by the presence of paxillin, is ∼1.4 times more concentrated, ∼4.5 times more clustered and much less mobile than in surrounding regions. Thus, while integrins are clustered throughout the cell, they differ in nascent adhesions and appear to initiate adhesion formation, despite their lack of visible organization. In more mature adhesions where the integrin is visibly organized there are ∼900 integrins μm–2 (about fivefold higher than surrounding regions). Interestingly, α5-integrin and α-actinin, but not paxillin, reside in a complex throughout the cell, where they diffuse and flow together, even in regions where they are not organized. During adhesion disassembly some integrins diffuse away slowly, α-actinin undergoes a directed movement at speeds similar to actin retrograde flow (0.29 μm min–1), while all of the paxillin diffuses away rapidly.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3