The microtubule end-binding protein EB2 is a central regulator of microtubule reorganisation in apico-basal epithelial differentiation

Author:

Goldspink Deborah A,Gadsby Jonathan R,Bellett Gemma,Keynton Jennifer,Tyrrell Benjamin J,Lund Elizabeth K,Powell Penny P,Thomas Paul,Mogensen Mette M

Abstract

Microtubule end-binding (EB) proteins influence microtubule dynamic instability, a process essential for microtubule reorganisation during apico-basal epithelial differentiation. Here we establish for the first time that EB2, but not EB1, expression is critical for initial microtubule reorganisation during apico-basal epithelial differentiation, and that EB2 downregulation promotes bundle formation. EB2 siRNA knockdown during early stages of apico-basal differentiation prevented microtubule reorganisation, while its downregulation at later stages promoted microtubule stability and bundle formation. Interestingly, while EB1 is not essential for microtubule reorganisation its knockdown prevented apico-basal bundle formation and epithelial elongation. EB2 siRNA depletion in undifferentiated epithelial cells induced formation of straight, less dynamic microtubules with EB1 and ACF7 lattice association and co-alignment with actin filaments, a phenotype that could be rescued by formin inhibition. Importantly, in situ inner ear and intestinal crypt epithelial tissue revealed direct correlations between low level of EB2 expression and presence of apico-basal microtubule bundles, which were absent where EB2 was elevated. EB2 is evidently important for initial microtubule reorganisation during epithelial polarisation, while its downregulation facilitates EB1/ACF7 microtubule lattice association, microtubule-actin filament co-alignment and bundle formation. The spatiotemporal expression of EB2 thus dramatically influences microtubule organisation, EB1/ACF7 deployment and epithelial differentiation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3