Affiliation:
1. King's College London 1 Department of Infectious Diseases , , Faculty of Life Sciences & Medicine, London SE1 9RT , UK
2. Centre of Excellence for Mass Spectrometry, King's College London 2 Proteomics Facility , , London SE5 9NU , UK
Abstract
ABSTRACT
Abscission is the final stage of cytokinesis whereby the midbody, a thin intercellular bridge, is resolved to separate the daughter cells. Cytokinetic abscission is mediated by the endosomal sorting complex required for transport (ESCRT), a conserved membrane remodelling machinery. The midbody organiser CEP55 recruits early acting ESCRT factors such as ESCRT-I and ALIX (also known as PDCD6IP), which subsequently initiate the formation of ESCRT-III polymers that sever the midbody. We now identify UMAD1 as an ESCRT-I subunit that facilitates abscission. UMAD1 selectively associates with VPS37C and VPS37B, supporting the formation of cytokinesis-specific ESCRT-I assemblies. TSG101 recruits UMAD1 to the site of midbody abscission, to stabilise the CEP55–ESCRT-I interaction. We further demonstrate that the UMAD1–ESCRT-I interaction facilitates the final step of cytokinesis. Paradoxically, UMAD1 and ALIX co-depletion has synergistic effects on abscission, whereas ESCRT-III recruitment to the midbody is not inhibited. Importantly, we find that both UMAD1 and ALIX are required for the dynamic exchange of ESCRT-III subunits at the midbody. Therefore, UMAD1 reveals a key functional connection between ESCRT-I and ESCRT-III that is required for cytokinesis.
Funder
Biotechnology and Biological Sciences Research Council
King's Health Partners
Wellcome Trust
Medical Research Council
King's College London
Publisher
The Company of Biologists
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. First person – James Glover;Journal of Cell Science;2023-08-01