Diverse progenitor cells preserve salivary gland ductal architecture after radiation induced damage

Author:

May Alison J.12,Cruz-Pacheco Noel12,Emmerson Elaine12,Gaylord Eliza A.12,Seidel Kerstin13,Nathan Sara12ORCID,Muench Marcus O.4,Klein Ophir135,Knox Sarah M.12ORCID

Affiliation:

1. Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA

2. Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA

3. Department of Orofacial Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA

4. Blood Systems Research Institute, San Francisco, CA, 94118, USA

5. Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA

Abstract

The ductal system of the salivary gland has long been postulated to be resistant to radiation-induced damage, a common side effect incurred by head and neck cancer patients receiving radiotherapy. Yet, whether the ducts are capable of regenerating after genotoxic injury, or if damage to ductal cells induces lineage plasticity, as has been reported in other organ systems, remains unknown. Here, we show that two ductal progenitor populations, marked exclusively by KRT14 and KIT, maintain non-overlapping ductal compartments after radiation exposure but do so through distinct cellular mechanisms. KRT14+ progenitor cells are fast cycling cells that proliferate in response to radiation-induced damage in a sustained manner and divide asymmetrically to produce differentiated cells of the larger granulated ducts. Conversely, KIT+ intercalated duct cells are long-lived progenitors for the intercalated ducts that undergo few cell divisions either during homeostasis or after gamma radiation, thus maintaining ductal architecture with slow rates of cell turnover. Together, these data illustrate the regenerative capacity of the salivary ducts and highlight the heterogeneity in the damage responses used by salivary progenitor cells to maintain tissue architecture.

Funder

National Institute of Dental and Craniofacial Research

National Eye Institute

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3