Affiliation:
1. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2. School of Biological Sciences, Monash University, Victoria 3800, Australia
Abstract
Ectotherms may respond to variable environmental conditions by altering their phenotypes. Phenotypic plasticity was initially thought to be beneficial to an organism's physiological fitness. Several alternative hypotheses, have, however, been proposed with growing empirical support. In this study, we test the full suite of hypotheses by investigating acclimation responses of locomotor performance for nine populations of five species of sub-Antarctic weevils, using static and fluctuating temperatures. Species showed typical locomotion thermal performance curves with temperature of the maximum speed (Topt) ranging between 22.3±1.7°C (mean±s.e.) and 31.1±0.7°C. For most species Topt was not affected by acclimation. For maximum speed (Umax), significant, positive effects of acclimation were found for all species except a supralittoral one. Individuals acclimated to 0°C showed much lower values than the other two acclimation treatments (15°C and fluctuating 0-15°C). Performance breadth (the index of the breadth of the curve, Tbr) typically showed little response to acclimation. None of the traits of the supralittoral species were affected by acclimation treatment. Responses to stable and fluctuating temperature treatments were similar. Our findings also revealed that the mean estimated activation energy 0.40±0.015 eV (mean±s.e.) was lower than for other herbivores, the category to which these weevils belong, suggesting that some form of compensation in the rate-temperature relationship may be evident. Thus, we typically found support for the warmer is better hypothesis for acclimation of locomotor performance, though some compensation is evident.
Funder
National Research Foundation
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献