Phenotypic plasticity in locomotor performance of a monophyletic group of weevils accords with the warmer is better hypothesis

Author:

Treasure Anne M.1ORCID,Chown Steven L.2ORCID

Affiliation:

1. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

2. School of Biological Sciences, Monash University, Victoria 3800, Australia

Abstract

Ectotherms may respond to variable environmental conditions by altering their phenotypes. Phenotypic plasticity was initially thought to be beneficial to an organism's physiological fitness. Several alternative hypotheses, have, however, been proposed with growing empirical support. In this study, we test the full suite of hypotheses by investigating acclimation responses of locomotor performance for nine populations of five species of sub-Antarctic weevils, using static and fluctuating temperatures. Species showed typical locomotion thermal performance curves with temperature of the maximum speed (Topt) ranging between 22.3±1.7°C (mean±s.e.) and 31.1±0.7°C. For most species Topt was not affected by acclimation. For maximum speed (Umax), significant, positive effects of acclimation were found for all species except a supralittoral one. Individuals acclimated to 0°C showed much lower values than the other two acclimation treatments (15°C and fluctuating 0-15°C). Performance breadth (the index of the breadth of the curve, Tbr) typically showed little response to acclimation. None of the traits of the supralittoral species were affected by acclimation treatment. Responses to stable and fluctuating temperature treatments were similar. Our findings also revealed that the mean estimated activation energy 0.40±0.015 eV (mean±s.e.) was lower than for other herbivores, the category to which these weevils belong, suggesting that some form of compensation in the rate-temperature relationship may be evident. Thus, we typically found support for the warmer is better hypothesis for acclimation of locomotor performance, though some compensation is evident.

Funder

National Research Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3