blf and the drl cluster synergistically regulate cell fate commitment during zebrafish primitive hematopoiesis

Author:

Zhang Xue1,Yang Yuxi1,Wei Yuxuan1,Zhao Qingshun1ORCID,Lou Xin2ORCID

Affiliation:

1. Medical School, Nanjing University 1 , Nanjing, 210093 , China

2. Research Institute of Intelligent Computing 2 , Zhejiang Lab, Hangzhou, 311100 , China

Abstract

ABSTRACT Hematopoiesis is a highly coordinated process that generates all the body's blood cells, and perturbations in embryonic hematopoiesis may result in illnesses ranging from fetal anemia to various leukemias. Correct establishment of hematopoietic progenitor cell fate is essential for the development of adequate blood cell subpopulations, although regulators of cell fate commitment have not been fully defined. Here, we show that primary erythropoiesis and myelopoiesis in zebrafish embryos are synergistically regulated by blf and the drl cluster, as simultaneous depletion led to severe erythrocyte aplasia and excessive macrophage formation at the expense of neutrophil development. Integrative analysis of transcriptome- and genome-wide binding data revealed that blf and drl cluster genes are responsible for constraining the expression of vasculogenesis-promoting genes in the intermediate cell mass and monocytopoiesis-promoting genes in the rostral blood island. This indicates that blf and drl cluster genes act as determinants of the fate commitment of erythroid and myeloid progenitor cells. Furthermore, a rescue screen demonstrated that Zfp932 is a potential mammalian functional equivalent to zebrafish blf and drl cluster genes. Our data provide insight into conserved cell fate commitment mechanisms of primitive hematopoiesis.

Funder

National Natural Science Foundation of China

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3