3H-l-histidine and 65Zn2+ are cotransported by a dipeptide transport system in intestine of lobsterHomarus americanus

Author:

Conrad Erik M.1,Ahearn Gregory A.1

Affiliation:

1. Department of Biology, 4567 St Johns Bluff Road, South, University of North Florida, Jacksonville, FL 32224, USA

Abstract

SUMMARYThe tubular intestine of the American lobster Homarus americanuswas isolated in vitro and perfused with a physiological saline whose composition was based on hemolymph ion concentrations and contained variable concentrations of 3H-l-histidine, 3H-glycyl-sarcosine and 65Zn2+. Mucosa to serosa (M→S) flux of each radiolabelled substrate was measured by the rate of isotope appearance in the physiological saline bathing the tissue on the serosal surface. Addition of 1–50 μmol l–1 zinc to the luminal solution containing 1–50 μmol l–13H-l-histidine significantly (P<0.01)increased M→S flux of amino acid compared to controls lacking the metal. The kinetics of M→S 3H-l-histidine flux in the absence of zinc followed Michaelis–Menten kinetics(Km=6.2±0.8 μmol l–1; Jmax =0.09±0.004 pmol cm–2min–1). Addition of 20 μmol l–1 zinc to the luminal perfusate increased both kinetic constants(Km=19±3 μmol l–1; Jmax=0.28±0.02 pmol cm–2min–1). Addition of both 20 μmol l–1 zinc and 100 μmol l–1l-leucine abolished the stimulatory effect of the metal alone (Km=4.5±1.7μmol l–1; Jmax=0.08±0.008 pmol cm–2 min–1). In the absence of l-histidine, M→S flux of 65Zn2+ also followed the Michaelis–Menten relationship and addition of l-histidine to the perfusate significantly (P<0.01)increased both kinetic constants. Addition of either 50 μmol l–1 Cu+ or Cu2+ and 20 μmol l–1l-histidine simultaneously abolished the stimulatory effect of l-histidine alone on transmural 65Zn2+ transport. Zinc-stimulation of M→S 3H-l-histidine flux was significantly(P<0.01) reduced by the addition of 100 μmol l–1 glycyl-sarcosine to the perfusate, as a result of the dipeptide significantly (P<0.01) reducing both l-histidine transport Km and Jmax. Transmural transport of 3H-glycyl-sarcosine was unaffected by the presence of either l-histidine or l-leucine when either amino acid was added to the perfusate alone, but at least a 50% reduction in peptide transport was observed when zinc and either of the amino acids were added simultaneously. These results show that 3H-l-histidine and 65Zn2+ are cotransported across the lobster intestine by a dipeptide carrier protein that binds both substrates in a bis-complex (Zn-[His]2) resembling the normal dipeptide substrate. In addition, the transmural transports of both substrates may also occur by uncharacterized carrier processes that are independent of one another and appear relatively specific to the solutes used in this study.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3