The Structure of Trichocysts in Paramecium Caudatum

Author:

BANNISTER L. H.1

Affiliation:

1. Departments of Biology and Anatomy, Guy's Hospital Medical School, London SE1 9RT, England

Abstract

The structure of undischarged and discharged trichocysts has been examined in Paramecium caudatum, and their light-microscopic appearance compared with their fine-structural organization. In living specimens undischarged trichocysts appear to be of a single type with a unimodal variation in length about a mean of 3.7 µm. When fixed for electron microscopy or compressed beneath a coverslip many of the trichocysts expand within the cell, giving rise to a variety of different forms of lower phase density. Ultrastructurally the undischarged trichocyst consists of at least 10 different components: these include a mesh-like sheath surrounding the body of the organelle; an inner and an outer sheath enclosing the tip, the inner sheath being made up of 4 spiralling envelopes with a square net substructure, and the outer sheath being formed of a dense amorphous matrix containing longitudinal microtubules and scattered fine filaments; a boundary surface to the outer sheath; a membranous trichocyst sac the apical region of which is surrounded by a cylinder of microtubules joined to each other with dense material; and lastly, the crystalline matrix of the trichocyst body and tip. This crystalline appearance is apparently related to the presence of a loosely interwoven complex of fine filaments which form a highly regular pattern of unit structures repeating at 16-nm intervals. In extended trichocysts the 60-nm banding pattern of the body is also composed of fine filaments arranged in a different, elongated manner in 2 distinct and alternating patterns which are taken to be 2 views of the same structure. Measurements indicate that when trichocysts extend they elongate by a factor of from 6 to 8. It is proposed that the crystalline pattern of the unextended trichocyst body transforms into the extended form by a simple rearrangement of the constituent filaments accompanied by their elongation. Possible models of the undischarged and discharged states of organization are suggested.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3