Insect cuticular hydrocarbon composition influences their interaction with spider capture threads

Author:

Joel Anna-Christin12ORCID,Schmitt Dorothea2,Baumgart Lucas1ORCID,Menzel Florian2ORCID

Affiliation:

1. RWTH Aachen University, Institute of Zoology, 52074 Aachen, Germany

2. Johannes Gutenberg-University, Institute of Organismic and Molecular Evolution, 55128 Mainz, Germany

Abstract

ABSTRACT Insects represent the main prey of spiders, and spiders and insects co-diversified in evolutionary history. One of the main features characterizing spiders is their web as a trap to capture prey. Phylogenetically, the cribellate thread is one of the earliest thread types that was specialized to capture prey. In contrast to other capture threads, it lacks adhesive glue and consists of nanofibres, which do not only adhere to insects via van der Waals forces but also interact with the insects' cuticular hydrocarbon (CHC) layer, thus enhancing adhesion. The CHC layer consists of multiple hydrocarbon types and is highly diverse between species. In this study, we show that CHC interaction with cribellate capture threads is affected by CHC composition of the insect. We studied the interaction in detail for four insect species with different CHC profiles and observed a differential migration of CHCs into the thread. The migration depends on the molecular structure of the hydrocarbon types as well as their viscosity, influenced by the ambient temperature during the interaction. As a consequence, adhesion forces to CHC layers differ depending on their chemical composition. Our results match predictions based on biophysical properties of hydrocarbons, and show that cribellate spiders can exert selection pressure on the CHC composition of their insect prey.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3