Divalent cations regulate the folding and activation status of integrins during their intracellular trafficking

Author:

Tiwari Shweta1,Askari Janet A.12,Humphries Martin J.12,Bulleid Neil J.3

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK

2. Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK

3. College of Medical, Veterinary and Life Sciences, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Integrins are divalent cation-dependent, αβ heterodimeric adhesion receptors that control many fundamental aspects of cell behaviour by bi-directional signalling between the extracellular matrix and intracellular cytoskeleton. The activation state of cell surface integrins is tightly regulated by divalent cation occupancy of the ligand-binding pocket and by interaction with cytoplasmic adaptor proteins, such as talin. These agents elicit gross conformational changes across the entire molecule, which specify the activation state. Much less is known about the activation state of newly synthesised integrins or the role of cations during the early folding and trafficking of integrins. Here we use a number of well-characterised, conformation-specific antibodies to demonstrate that β1-integrins adopt the bent, inactive conformation after assembly with α-integrins in the endoplasmic reticulum. Folding and assembly are totally dependent on the binding of Ca2+ ions. In addition, Ca2+ binding prevents integrin activation before its arrival at the cell surface. Activation at the cell surface occurs only following displacement of Ca2+ with Mg2+ or Mn2+. These results demonstrate the essential roles played by divalent cations to facilitate folding of the β-integrin subunit, to prevent inappropriate intracellular integrin signalling, and to activate ligand binding and signalling at the cell surface.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3