Integrating force-sensing and signaling pathways in a model for the regulation of wing imaginal disc size

Author:

Aegerter-Wilmsen Tinri1,Heimlicher Maria B.1,Smith Alister C.1,de Reuille Pierre Barbier2,Smith Richard S.2,Aegerter Christof M.3,Basler Konrad1

Affiliation:

1. Institute of Molecular Life Sciences, University of Zurich, CH-8057, Switzerland.

2. Institute for Plant Science, University of Bern, CH-3013, Switzerland.

3. Institute of Physics, University of Zurich, CH-8057, Switzerland.

Abstract

The regulation of organ size constitutes a major unsolved question in developmental biology. The wing imaginal disc of Drosophila serves as a widely used model system to study this question. Several mechanisms have been proposed to have an impact on final size, but they are either contradicted by experimental data or they cannot explain a number of key experimental observations and may thus be missing crucial elements. We have modeled a regulatory network that integrates the experimentally confirmed molecular interactions underlying other available models. Furthermore, the network includes hypothetical interactions between mechanical forces and specific growth regulators, leading to a size regulation mechanism that conceptually combines elements of existing models, and can be understood in terms of a compression gradient model. According to this model, compression increases in the center of the disc during growth. Growth stops once compression levels in the disc center reach a certain threshold and the compression gradient drops below a certain level in the rest of the disc. Our model can account for growth termination as well as for the paradoxical observation that growth occurs uniformly in the presence of a growth factor gradient and non-uniformly in the presence of a uniform growth factor distribution. Furthermore, it can account for other experimental observations that argue either in favor or against other models. The model also makes specific predictions about the distribution of cell shape and size in the developing disc, which we were able to confirm experimentally.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3