Adaptive mechanisms in the elasmobranch hindbrain

Author:

Bodznick D.1,Montgomery J.C.1,Carey M.1

Affiliation:

1. Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. dbodznick@wesleyan.edu.

Abstract

The suppression of self-generated electrosensory noise (reafference) and other predictable signals in the elasmobranch medulla is accomplished in part by an adaptive filter mechanism, which now appears to represent a more universal form of the modifiable efference copy mechanism discovered by Bell. It also exists in the gymnotid electrosensory lateral lobe and mechanosensory lateral line nucleus in other teleosts. In the skate dorsal nucleus, motor corollary discharge, proprioceptive and descending electrosensory signals all contribute in an independent and additive fashion to a cancellation input to the projection neurons that suppresses their response to reafference. The form of the cancellation signal is quite stable and apparently well-preserved between bouts of a particular behavior, but it can also be modified within minutes to match changes in the form of the reafference associated with that behavior. Motor corollary discharge, proprioceptive and electrosensory inputs are each relayed to the dorsal nucleus from granule cells of the vestibulolateral cerebellum. Direct evidence from intracellular studies and direct electrical stimulation of the parallel fiber projection support an adaptive filter model that places a principal site of the filter's plasticity at the synapses between parallel fibers and projection neurons.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3