Affiliation:
1. Institut fur Zoologie der Universitat Regensburg, Universitatsstrasse 31, D-93040 Regensburg, Germany. rudolf. schwind@biologie.uni-regensburg.de.
Abstract
When Daphnia pulex are presented on one side of their visual field with diffuse, large-area linearly polarized light with a horizontal e-vector and on the other side of their visual field with large-area polarized light with a lower degree of polarization, they swim towards the place with the higher degree of polarization. The response is intensity-invariant: Daphnia pulex swim towards the place of maximal polarization regardless of which side of their visual field has the higher intensity of light. As a result of Rayleigh scattering in a pond, the light surrounding the Daphnia is polarized and has a horizontal e-vector. Near the shore, polarization is not homogeneous. The light seen in the direction of the open water has a higher degree of polarization than that seen in the direction towards the shore. Therefore, in a pond, swimming towards the place with the highest degree of polarization leads the Daphnia away from the shore. For Daphnia, this response explains a mechanism that underlies the well-known phenomenon of ‘shore flight’, the active departure of small pelagic crustaceans from shore zones.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献