Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti

Author:

Gopfert M.C.1,Briegel H.1,Robert D.1

Affiliation:

1. Institute for Zoology, Laboratory of Bioacoustics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. mgoepfer@zool.unizh.ch

Abstract

Male mosquitoes are attracted by the flight sounds of conspecific females. In males only, the antennal flagellum bears a large number of long hairs and is therefore said to be plumose. As early as 1855, it was proposed that this remarkable antennal anatomy served as a sound-receiving structure. In the present study, the sound-induced vibrations of the antennal flagellum in male and female Aedes aegypti were compared, and the functional significance of the flagellar hairs for audition was examined. In both males and females, the antennae are resonantly tuned mechanical systems that move as simple forced damped harmonic oscillators when acoustically stimulated. The best frequency of the female antenna is around 230 Hz; that of the male is around 380 Hz, which corresponds approximately to the fundamental frequency of female flight sounds. The antennal hairs of males are resonantly tuned to frequencies between approximately 2600 and 3100 Hz and are therefore stiffly coupled to, and move together with, the flagellar shaft when stimulated at biologically relevant frequencies around 380 Hz. Because of this stiff coupling, forces acting on the hairs can be transmitted to the shaft and thus to the auditory sensory organ at the base of the flagellum, a process that is proposed to improve acoustic sensitivity. Indeed, the mechanical sensitivity of the male antenna not only exceeds the sensitivity of the female antenna but also those of all other arthropod movement receivers studied so far.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference11 articles.

1. Acoustics of insect song;Bennet-Clark;Nature,1971

2. A particle velocity microphone for the song of small insects and other acoustic measurements;Bennet-Clark;J. Exp. Biol,1984

3. Stimuli provided by the courtship of male Drosophila melanogaster;Bennet-Clark;Nature,1967

4. Tympanal hearing in insects;Hoy;Annu. Rev. Ent,1996

5. Auditory apparatus of the Culex mosquito;Johnston;Q. J. Microsc. Sci,1855

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3