Transformation of leech microglial cell morphology and properties following co-culture with injured central nervous system tissue

Author:

Bernhardi R.V.1,Nicholls J.G.1

Affiliation:

1. Department of Pharmacology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland. nicholls@sissa.it.

Abstract

When the leech central nervous system (CNS) is injured, microglial cells migrate to the site of the lesion. It is possible that the injured CNS releases diffusible substances that alter the properties of microglial cells; to investigate this, microglial cells were cultured in the presence of injured or uninjured CNS tissue. Grown on Concanavalin A (Con-A), 75 % of microglial cells are rounded in shape and are avoided by growing neurites. However, when chains of leech ganglia with damaged connectives were cultured on Con-A next to microglial cells, many of the microglial cells changed their morphology. The number of rounded cells present decreased to 48 %, 4 % became spindle-shaped and 48 % had an intermediate form. In addition, the presence of crushed ganglionic chains allowed more growth of neurites across microglial cells than occurred under control conditions, although round-shaped microglia were still avoided by growing neurites. Similar changes in microglial cells were produced in cells plated on Con-A in the presence of conditioned medium from crushed ganglionic chains. Hence, a diffusible substance from injured CNS tissue caused the morphology of the microglial cells plated on Con-A to become more like that of microglia plated on laminin, on which only 22 % of the cells are rounded while the remainder are spindle-shaped and are readily crossed by neurites. Changes in morphology were not observed when microglial cells were cultured with frozen and crushed ganglionic chains or with uncrushed chains. These experiments demonstrate that substances released from damaged leech CNS cause microglial cells plated on Con-A to change their morphology and the way in which they interact with growing neurites.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3