Neurogenesis, cell death and regeneration in the adult gymnotiform brain

Author:

Zupanc G.K.1

Affiliation:

1. School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK. gunther.zupanc@man.ac.uk

Abstract

Gymnotiform fish, like all teleosts examined thus far, are distinguished by their enormous potential for the production of new neurons in the adult brain. In Apteronotus leptorhynchus, on average 10(5) cells, corresponding to approximately 0.2 % of the total population of cells in the adult brain, are in S-phase within any period of 2 h. At least a portion of these newly generated cells survive for the rest of the fish's life. This long-term survival, together with the persistent generation of new cells, leads to a continuous growth of the brain during adulthood. Zones of high proliferative activity are typically located at or near the surface of the ventricular, paraventricular and cisternal systems. In the central posterior/ prepacemaker nucleus, for example, new cells are generated, at very high rates, in areas near the wall of the third ventricle. At least some of these cells differentiate into neurons, express immunoreactivity against the neuropeptide somatostatin and migrate into more lateral areas of this complex. Approximately 75 % of all new brain cells are generated in the cerebellum. In the corpus cerebelli and the valvula cerebelli, they are produced in the molecular layers, whereas in the eminentia granularis the newborn cells stem from proliferation zones in the pars medialis. Within the first few days of their life, these cells migrate towards specific target areas, namely the associated granule cell layers. At least some of them develop into granule neurons. The high proliferative activity is counterbalanced by apoptosis, a mechanism that resembles the processes known from embryonic development of the vertebrate brain. Apoptosis also appears to be used as an efficient mechanism for the removal of cells damaged through injury in the brain of adult Apteronotus leptorhynchus. Since apoptosis is not accompanied by the side effects known from necrosis, this ‘clean’ type of cell death may, together with the enormous proliferative activity in the brain, explain, at least partially, the tremendous capability of teleost fish to replace damaged neurons with newly generated ones. One factor that appears to play a major role in the generation of new cells and in their further development is the neuropeptide somatostatin. In the caudal cerebellum of the gymnotiform brain, somatostatin-binding sites are expressed, at extremely high densities, at sites corresponding to the areas of origin, migration and differentiation of the newborn cells. This pattern of expression resembles the expression pattern in the rat cerebellum, where somatostatin immunoreactivity and somatostatin-binding sites are transiently expressed at the time when the granule cells of the cerebellum are generated. Moreover, after mechanical lesions of the corpus cerebelli, the expression of somatostatin-like immunoreactivity is tremendously increased in several cell types (presumably astrocytes, microglia and granule cell neurons) near the path of the lesion; the time course of this expression coincides with the temporal pattern underlying the recruitment of new cells incorporated at the site of the lesion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3