A point-mass model of gibbon locomotion

Author:

Bertram J.E.1,Ruina A.1,Cannon C.E.1,Chang Y.H.1,Coleman M.J.1

Affiliation:

1. College of Veterinary Medicine, Cornell University, USA, Theoretical and Applied Mechanics, Cornell University, USA. jbertram@garnet.acns.fsu.edu

Abstract

In brachiation, an animal uses alternating bimanual support to move beneath an overhead support. Past brachiation models have been based on the oscillations of a simple pendulum over half of a full cycle of oscillation. These models have been unsatisfying because the natural behavior of gibbons and siamangs appears to be far less restricted than so predicted. Cursorial mammals use an inverted pendulum-like energy exchange in walking, but switch to a spring-based energy exchange in running as velocity increases. Brachiating apes do not possess the anatomical springs characteristic of the limbs of terrestrial runners and do not appear to be using a spring-based gait. How do these animals move so easily within the branches of the forest canopy? Are there fundamental mechanical factors responsible for the transition from a continuous-contact gait where at least one hand is on a hand hold at a time, to a ricochetal gait where the animal vaults between hand holds? We present a simple model of ricochetal locomotion based on a combination of parabolic free flight and simple circular pendulum motion of a single point mass on a massless arm. In this simple brachiation model, energy losses due to inelastic collisions of the animal with the support are avoided, either because the collisions occur at zero velocity (continuous-contact brachiation) or by a smooth matching of the circular and parabolic trajectories at the point of contact (ricochetal brachiation). This model predicts that brachiation is possible over a large range of speeds, handhold spacings and gait frequencies with (theoretically) no mechanical energy cost. We then add the further assumption that a brachiator minimizes either its total energy or, equivalently, its peak arm tension, or a peak tension-related measure of muscle contraction metabolic cost. However, near the optimum the model is still rather unrestrictive. We present some comparisons with gibbon brachiation showing that the simple dynamic model presented has predictive value. However, natural gibbon motion is even smoother than the smoothest motions predicted by this primitive model.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Reinforcement Learning Control Method for a Four-Link Brachiation Robot;2023 2nd International Conference on Machine Learning, Cloud Computing and Intelligent Mining (MLCCIM);2023-07-25

2. How Pendular Is Human Brachiation? When Form Does Not Follow Function;Animals;2023-04-22

3. The collisional geometry of economical walking predicts human leg and foot segment proportions;Journal of The Royal Society Interface;2023-03

4. Learning to Brachiate via Simplified Model Imitation;Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings;2022-08-07

5. Reactive task and motion planning for robust whole-body dynamic locomotion in constrained environments;The International Journal of Robotics Research;2022-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3