Affiliation:
1. Department of Physiology, Istituto Tecnologie Biomediche Avanzate, Consiglio Nazionale delle Ricerche, Via Fratelli Cervi 93, Milano, Italy. a.e.minetti@mmu.ac.uk.
Abstract
Three-dimensional motion capture and metabolic assessment were performed on four standardbred horses while walking, trotting and galloping on a motorized treadmill at different speeds. The mechanical work was partitioned into the internal work (W(INT)), due to the speed changes of body segments with respect to the body centre of mass, and the external work (W(EXT)), due to the position and speed changes of the body centre of mass with respect to the environment. The estimated total mechanical work (W(TOT)=W(INT)+W(EXT)) increased with speed, while metabolic work (C) remained rather constant. As a consequence, the ‘apparent efficiency’ (eff(APP)=W(TOT)/C) increased from 10 % (walking) to over 100 % (galloping), setting the highest value to date for terrestrial locomotion. The contribution of elastic structures in the horse's limbs was evaluated by calculating the elastic energy stored and released during a single bounce (W(EL,BOUNCE)), which was approximately 1.23 J kg(−)(1) for trotting and up to 6 J kg(−)(1) for galloping. When taking into account the elastic energy stored by the spine bending and released as W(INT), as suggested in the literature for galloping, W(EL,BOUNCE) was reduced by 0.88 J kg(−)(1). Indirect evidence indicates that force, in addition to mechanical work, is also a determinant of the metabolic energy expenditure in horse locomotion.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献