Mechanics of ventilation in swellsharks, Cephaloscyllium ventriosum (Scyliorhinidae)

Author:

Ferry-Graham L.A.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, Comparative Physiology Group, University of California at Irvine, Irvine, CA 92697-2525, USA. laferry@uci.edu

Abstract

A simple two-pump model has served to describe the mechanics of ventilation in cartilaginous and bony fishes since the pioneering work of G. M. Hughes. A hallmark of this model is that water flow over the gills is continuous. Studies of feeding kinematics in the swellshark Cephaloscyllium ventriosum, however, suggested that a flow reversal occurred during prey capture and transport. Given that feeding is often considered to be simply an exaggeration of the kinematic events performed during respiration, I investigated whether flow reversals are potentially present during respiration. Pressure and impedance data were coupled with kinematic data from high-speed video footage and dye studies and used to infer patterns of water flow through the heads of respiring swellsharks. Swellsharks were implanted with pressure transducers to determine the pattern and magnitude of pressures generated within the buccal and parabranchial (gill) cavities during respiration. Pressure traces revealed extended periods of pressure reversal during the respiratory cycle. Further, impedance data suggested that pressures within the buccal and parabranchial cavities were not generated by the cyclic opening and closing of the jaws and gills in the manner previously suggested by Hughes. Thus, the classic model needs to be re-evaluated to determine its general applicability. Two alternative models for pressure patterns and their mechanism of generation during respiration are provided. The first depicts a double-reversal scenario common in the swellshark whereby pressures are reversed following both of the pump stages (the suction pump and the pressure pump) rather than after the pressure-pump stage only. The second model describes a scenario in which the suction pump is insufficient for generating a positive pressure differential across the gills; thus, a pressure reversal persists throughout this phase of respiration. Kinematic analysis based on high-speed video footage and dye studies, however, suggested that during respiration, as opposed to feeding, distinct flow reversals do not result from the pressure reversals. Thus, water is probably pooling around the gill filaments during the long periods of pressure reversal.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3