Animal movement, mechanical tuning and coupled systems

Author:

Daniel T.L.1,Tu M.S.1

Affiliation:

1. Department of Zoology, Box 35–1800, University of Washington, Seattle, WA 98195-1800, USA. danielt@zoology.washington.edu

Abstract

Over the past two decades, there has been a growing interest in developing predictive models of animal movement and force generation in fluids. In a departure from past studies that have asked how prescribed motions of a propulsor (wing or fin) generate lift and thrust during swimming and flying, we are increasingly interested in predicting the propulsor's movement as well as the forces generated by it. This interest, motivated by a need to understand the control and dynamics of locomotion and its applications to robotics and animal physiology, requires that we develop integrative models and analyses of swimming and flying that incorporate neural control and muscle physiology into more traditional biomechanical studies of locomotion in fluids. This approach extends from whole-animal studies to the molecular basis of force generation. In this paper, we explore mechanical tuning from the level of the whole animal to the proteins driving force generation in muscle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3