Affiliation:
1. Department of Zoology, Box 35–1800, University of Washington, Seattle, WA 98195-1800, USA. danielt@zoology.washington.edu
Abstract
Over the past two decades, there has been a growing interest in developing predictive models of animal movement and force generation in fluids. In a departure from past studies that have asked how prescribed motions of a propulsor (wing or fin) generate lift and thrust during swimming and flying, we are increasingly interested in predicting the propulsor's movement as well as the forces generated by it. This interest, motivated by a need to understand the control and dynamics of locomotion and its applications to robotics and animal physiology, requires that we develop integrative models and analyses of swimming and flying that incorporate neural control and muscle physiology into more traditional biomechanical studies of locomotion in fluids. This approach extends from whole-animal studies to the molecular basis of force generation. In this paper, we explore mechanical tuning from the level of the whole animal to the proteins driving force generation in muscle.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献