The hydrophobicity of vertebrate elastins

Author:

Chalmers G.W.1,Gosline J.M.1,Lillie M.A.1

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.

Abstract

An evolutionary trend towards increasing hydrophobicity of vertebrate arterial elastins suggests that there is an adaptive advantage to higher hydrophobicity. The swelling and dynamic mechanical properties of elastins from several species were measured to test whether hydrophobicity is associated with mechanical performance. Hydrophobicity was quantified according to amino acid composition (HI), and two behaviour-based indices: the Flory-Huggins solvent interaction parameter (chi1), and a swelling index relating tissue volumes at 60 and 1 degrees C. Swelling index values correlated with chi1 and, for most species studied, with HI, suggesting that the different approaches used to quantify hydrophobicity are equally valid. Dynamic mechanical properties were measured both in a closed system, to control the effects of water content, and in an open system, to determine whether the increased swelling of hydrophobic materials at low temperatures offsets the direct stiffening effect of cold. There were no biologically significant differences in mechanical behaviour in either open or closed systems that could be attributed to hydrophobicity. Therefore, although the original function of hydrophobicity in an ancestral elastin may have been to produce molecular mobility, mechanical performance did not drive a subsequent increase in hydrophobicity. Higher hydrophobicities may have arisen to facilitate the manufacture of the elastic fibre.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3