Affiliation:
1. Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.
Abstract
An evolutionary trend towards increasing hydrophobicity of vertebrate arterial elastins suggests that there is an adaptive advantage to higher hydrophobicity. The swelling and dynamic mechanical properties of elastins from several species were measured to test whether hydrophobicity is associated with mechanical performance. Hydrophobicity was quantified according to amino acid composition (HI), and two behaviour-based indices: the Flory-Huggins solvent interaction parameter (chi1), and a swelling index relating tissue volumes at 60 and 1 degrees C. Swelling index values correlated with chi1 and, for most species studied, with HI, suggesting that the different approaches used to quantify hydrophobicity are equally valid. Dynamic mechanical properties were measured both in a closed system, to control the effects of water content, and in an open system, to determine whether the increased swelling of hydrophobic materials at low temperatures offsets the direct stiffening effect of cold. There were no biologically significant differences in mechanical behaviour in either open or closed systems that could be attributed to hydrophobicity. Therefore, although the original function of hydrophobicity in an ancestral elastin may have been to produce molecular mobility, mechanical performance did not drive a subsequent increase in hydrophobicity. Higher hydrophobicities may have arisen to facilitate the manufacture of the elastic fibre.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献