Branching out in locomotion: the mechanics of perch use in birds and primates

Author:

Bonser R.H.1

Affiliation:

1. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. richard.bonser@bbsrc.ac.uk

Abstract

Many animals use thin perches, such as the branches of trees, as locomotory substrates. In this paper, I have reviewed the literature concerned with measurements of locomotory forces made by birds and primates on thin and flexible substrates. Through a knowledge of the locomotory forces exerted by animals when using different substrates, the mechanical cost of their use can be established. We are just beginning to learn about the magnitude and patterns of force production in various branch-using vertebrates, primarily as a result of the development of instrumented perches. Instrumented perches have been designed to measure the forces produced by birds and primates when leaping from rigid and flexible horizontal and flexible vertical perches, and also from instrumented handgrips during brachiation. The development of these techniques for birds and primates allows us to compare the way in which they use perches as locomotory substrates. In both birds and primates, the magnitudes of landing forces are smaller than those during take-off. Two explanations have been proposed; the difference is either a consequence of perch compliance or it is a strategic decision to be cautious of ‘new’ perches. Leaps from flexible perches may be somewhat inefficient because considerable energy is dissipated in bending the perch, and this energy may remain unrecovered when the animal leaves contact with the perch.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference23 articles.

1. Elastic mechanisms in primate locomotion;Alexander;Z. Morph. Anthropol,1991

2. Leg design and jumping technique for humans, other vertebrates and insects;Alexander;Phil. Trans. R. Soc. Lond. B,1995

3. Storage of elastic strain energy in muscle and other tissues;Alexander;Nature,1977

4. Storage and utilization of elastic strain energy during jumping;Anderson;J. Biomech,1993

5. Measuring leg thrust forces in the common starling;Bonser;J. Exp. Biol,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3