Affiliation:
1. School of Biological Science, University of California, Irvine, CA 92697, USA and Department of Biology, Emory University, Atlanta, GA 30322, USA. rkjoseph@uci.edu
Abstract
Active shortening of respiratory muscle L2B from the crab Carcinus maenas results in contractile deactivation, seen as (1) a decline of force during the course of isovelocity shortening, (2) a reduction in the rate of force redevelopment following shortening, (3) a depression of the level of isometric force reached following shortening, and (4) an accelerated relaxation at the end of stimulation. The degree of deactivation increases with increasing distance of shortening, decreases with increasing shortening velocity, and is approximately linearly related to the work done during shortening. Deactivation lasts many seconds if stimulation is maintained, but is largely although not completely removed if the stimulation is temporarily interrupted so that the force drops towards the resting level. Deactivation for a given distance and velocity of shortening increases with increasing muscle length above the optimum length for force production. Stimulating muscle L2B at suboptimal frequencies gives tetanic contractions that are fully fused but of less than maximal amplitude. The depression of force following shortening, relative to the force during an isometric contraction, is independent of the stimulus frequency used to activate the muscle, indicating that deactivation is not a function of the background level of stimulus-controlled muscle activation upon which it occurs. Deactivation reduces the work required to restretch a muscle after it has shortened, but it also lowers the force and therefore the work done during shortening. The net effect of deactivation on work output over a full shortening/lengthening cycle is unknown.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献