Hiding responses of locusts to approaching objects

Author:

Hassenstein B.1,Hustert R.1

Affiliation:

1. Institut fur Zoologie und Anthropologie der Universitat Gottingen, Berliner Strasse 28, D-37073 Gottingen, Germany. rhuster@gwdg.de.

Abstract

Locusts, Locusta migratoria, sitting on a plant stem hide from dark moving or expanding shapes in their environment. The fore- and middle legs perform this avoidance response by making lateral tilting movements, while the hindlegs slide laterally and guide rotation of the posterior body over the stem. During larger turns, the legs take lateral steps when lateral tilting is limited by the joints. Slow hiding movements of less than 300 degrees s-1 of angular velocity are induced by slowly changing (looming) shapes, and interposed stops or slowing of the movement can delay the progress of this hiding manoeuvre. Fast hiding movements with angular velocities between 120 degrees s-1 and 860 degrees s-1 proceed continuously and rapidly in response to rapidly expanding stimuli. Hiding responses to expanding shapes occur only after the expanding image has exceeded a threshold visual angle of 8–9.5 degrees. Hiding response latencies range between 220 ms and 1.2 s for fast hiding and are approximately 1.2 s for most slow hiding responses. Predator-avoidance responses such as freezing, jerking, crouching, walking backwards, dropping or jumping can be used instead of or in conjunction with hiding behaviour. We conclude that the fast hiding behaviour of locusts is a specific goal-directed type of optomotor behaviour requiring positional information from small-field detectors of shape expansion in the interneurone layers of the locust eye.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3