Metabolic opportunists: feeding and temperature influence the rate and pattern of respiration in the high arctic woollybear caterpillar gynaephora groenlandica (Lymantriidae)

Author:

Bennett V.A.1,Kukal O.1,Lee R.E.1

Affiliation:

1. Department of Zoology, Miami University, Oxford, OH 45056, USA and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6. bennetv@miavx1.muohio.edu.

Abstract

Arctic woollybear caterpillars, Gynaephora groenlandica, had the capacity to rapidly and dramatically increase respiration rates up to fourfold within 12–24 h of feeding and exhibited similar decreases in respiration of 60–85 % in as little as 12 h of starvation. At the peak of their feeding season, the respiration rates of caterpillars also increased significantly with temperature from 0.5 to 22 degreesC for both fed and starved caterpillars (Q10=1-5). Indicative of diapause, late season caterpillars had depressed respiration rates which were less sensitive to temperature changes (Q10 approximately 1.5), while respiration rates for caterpillars that had spun hibernacula were even lower. G. groenlandica did not appear to demonstrate metabolic cold adaptation compared with other temperate lepidopteran larvae. The seasonal capacity to adjust metabolic rate rapidly in response to food consumption and temperature (which can be elevated by basking) may promote the efficient acquisition of energy during the brief (1 month) summer growing and feeding season, while conserving energy by entering diapause when conditions are less favorable. These adaptations, along with their long 15–20 year life cycle and the retention of freeze tolerance year-round, promote the survival of G. groenlandica in this harsh polar environment.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diurnal temperature variation impacts energetics but not reproductive effort across seasons in a temperate dung beetle;Ecology;2024-01-30

2. Plate Section (PDF Only);Insect Diapause;2022-02-03

3. Subject Index;Insect Diapause;2022-02-03

4. Species Index;Insect Diapause;2022-02-03

5. References;Insect Diapause;2022-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3