Affiliation:
1. Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA. Catania@ctrvax.vanderbilt.edu
Abstract
The nose of the star-nosed mole Condylura cristata is a complex biological novelty consisting of 22 epidermal appendages. How did this new set of facial appendages arise? Recent studies find remarkable conservation of the genes expressed during appendage formation across phyla, suggesting that the basic mechanisms for appendage development are ancient. In the nose of these moles, however, we find a unique pattern of appendage morphogenesis, showing that evolution is capable of constructing appendages in different ways. During development, the nasal appendages of the mole begin as a series of waves in the epidermis. A second deep layer of epidermis then grows under these superficial epidermal waves to produce 22 separate, elongated epidermal cylinders embedded in the side of the mole's face. The caudal end of each cylinder later erupts from the face and rotates forward to project rostrally, remaining attached only at the tip of the snout. As a result of this unique ‘unfolding’ formation, the rostral end of each adult appendage is derived from caudal embryonic facial tissue, while the caudal end of each appendage is derived from rostral facial tissue. This developmental process has essentially no outgrowth phase and results in the reversal of the original embryonic orientation of each appendage. This differs from the development of other known appendages, which originate either as outgrowths of the body wall or from subdivisions of outgrowths (e.g. tetrapod digits). Adults of a different mole species (Scapanus townsendii) exhibit a star-like pattern that resembles an embryonic stage of the star-nosed mole, suggesting that the development of the star recapitulates stages of its evolution.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献