A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster

Author:

Davis Monica M.1,O'Keefe Sandra L.1,Primrose David A.2,Hodgetts Ross B.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.

2. Department of Medical Microbiology and Immunology, University of Alberta,Edmonton, AB T6G 2H7, Canada.

Abstract

A neuropeptide hormone-signalling pathway controls events surrounding eclosion in Drosophila melanogaster. Ecdysis-triggering hormone,eclosion hormone and crustacean cardioactive peptide (CCAP) together control pre-eclosion and eclosion events, whereas bursicon, through its receptor rickets (RK), controls post-eclosion development. Cuticular tanning is a convenient visible marker of the temporally precise post-eclosion developmental progression, and we investigated how it is controlled by the ecdysis neuropeptide cascade. Together, two enzymes, tyrosine hydroxylase (TH,encoded by ple) and dopa decarboxylase (DDC, encoded by Ddc), produce the dopamine that is required for tanning. Levels of both the ple and Ddc transcripts begin to accumulate before eclosion, coincident with the onset of pigmentation of the pharate adult bristles and epidermis. Since DDC activity is high before the post-eclosion onset of tanning, a different factor must be regulated to switch on tanning. Transcriptional control of ple does not regulate the onset of tanning because ple transcript levels remain unchanged from 24 hours before to 12 hours after eclosion. TH protein present before eclosion is degraded,and no TH activity can be detected at eclosion. However, TH protein rapidly accumulates within an hour of eclosion and we provide evidence that CCAP controls this process. Furthermore, we show that TH is transiently activated during tanning by phosphorylation at Ser32, as a result of bursicon signalling. We conclude that the ecdysis hormone cascade acts as a regulatory switch to control the precise onset of tanning by both translational and activational control of TH.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3