Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin

Author:

Watanuki Yutaka1,Wanless Sarah2,Harris Mike2,Lovvorn James R.3,Miyazaki Masamine4,Tanaka Hideji1,Sato Katsufumi5

Affiliation:

1. Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, 041-8611, Japan

2. NERC Centre for Ecology and Hydrology, Banchory, Aberdeenshire AB31 4BW,UK

3. Department of Zoology, University of Wyoming, Laramie, WY 82071,USA

4. Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand

5. National Institute of Polar Research, 1-9-10 Itabashi-ku, Tokyo, 173-8515,Japan

Abstract

SUMMARYIn diving birds, the volume and resulting buoyancy of air spaces changes with dive depth, and hydrodynamic drag varies with swim speed. These factors are important in the dive patterns and locomotion of alcids that use their wings both for aerial flight and underwater swimming and of penguins that use their wings only for swimming. Using small data-loggers on free-ranging birds diving to 20–30 m depth, we measured depth at 1 Hz and surge and heave accelerations at 32–64 Hz of four species of alcids (0.6–1.0 kg mass) and the smallest penguin species (1.2 kg). Low- and high-frequency components of the fluctuation of acceleration yielded estimates of body angles and stroke frequencies, respectively. Swim speed was estimated from body angle and rate of depth change. Brünnich's (Uria lomvia) and common(Uria aalge) guillemots descended almost vertically, whereas descent of razorbills (Alca torda), rhinoceros auklets (Cerorhinca monocerata) and little penguins (Eudyptula minor) was more oblique. For all species, swim speed during descent was within a relatively narrow range. Above depths of 20–30 m, where they were all positively buoyant, all species ascended without wing stroking. During descent, little penguins made forward accelerations on both the upstroke and downstroke regardless of dive depth. By contrast, descending alcids produced forward accelerations on both upstroke and downstroke at depths of <10 m but mainly on the downstroke at greater depths; this change seemed to correspond to the decrease of buoyancy with increasing depth. The magnitude of surge (forward)acceleration during downstrokes was smaller, and that during upstrokes greater, in little penguins than in alcids. This pattern presumably reflected the proportionally greater mass of upstroke muscles in penguins compared with alcids and may allow little penguins to swim at less variable instantaneous speeds.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3