Is a parallel elastic element responsible for the enhancement of steady-state muscle force following active stretch?

Author:

Bullimore S. R.1,MacIntosh B. R.1,Herzog W.1

Affiliation:

1. Human Performance Lab, Faculty of Kinesiology, University of Calgary,2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Abstract

SUMMARY For over 50 years, it has been recognised that muscles from many different species of animals are able to generate a higher steady-state isometric force after active stretch than during a purely isometric contraction at the same length. This is known as `residual force enhancement' (rFE). The mechanism underlying this phenomenon remains controversial. One proposal is that an elastic element parallel to the cross-bridges becomes stiffer, or is engaged,when the muscle is activated and generates force when stretched. If this is indeed the sole mechanism, then rFE should be eliminated by subsequently shortening the muscle by a distance equal to or greater than the initial stretch. We tested this hypothesis using six intact single fibres from frog lumbrical muscle. The fibres were activated and stretched to generate rFE and then rapidly shortened by between 25% and 700% of the initial stretch distance. In contrast to previous reports, we found that rapid shortening induced a depression of subsequent isometric force. We used two methods to account for this force depression when calculating rFE, thereby obtaining upper and lower bounds for the true rFE. With both methods of calculation, rFE was significantly greater than zero when shortening distance was equal to stretch distance (P=0.0004 and P=0.03, respectively). Therefore, our hypothesis was not supported. We conclude that rFE is unlikely to be generated solely by a parallel elastic element.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3