Modeling human epigenetic disorders in mice: Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome

Author:

Chang Suhee1ORCID,Bartolomei Marisa S.1ORCID

Affiliation:

1. Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA

Abstract

Genomic imprinting, a phenomenon where the two parental alleles are regulated differently, is observed in mammals, marsupials and a few other species, including seed-bearing plants. Dysregulation of genomic imprinting can cause developmental disorders such as Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). In this review, we discuss 1) how various (epi)genetic lesions lead to the dysregulation of clinically relevant imprinted loci and 2) how such perturbations may contribute to the developmental defects in BWS and SRS. Given that the regulatory mechanisms of most imprinted clusters are well conserved between mice and humans, numerous mouse models of BWS and SRS have been generated. These mouse models are key to understanding how mutations at imprinted loci result in pathological phenotypes in humans, although there are some limitations. This review focuses on how the biological findings obtained from innovative mouse models explain clinical features of BWS and SRS.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3