Effects of early-stage aging on locomotor dynamics and hindlimb muscle force production in the rat

Author:

Horner Angela M.1,Russ David W.23,Biknevicius Audrone R.4

Affiliation:

1. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA

2. Ohio University Division of Physical Therapy, Athens, OH 45701, USA

3. Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, USA

4. Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH 45701, USA

Abstract

SUMMARYAttenuation of locomotor function is common in many species of animals as they age. Dysfunctions may emerge from a constellation of age-related impairments, including increased joint stiffness, reduced ability to repair muscle tissue, and decreasing fine motor control capabilities. Any or all of these factors may contribute to gait abnormalities and substantially limit an animal's speed and mobility. In this study we examined the effects of aging on whole-animal locomotor performance and hindlimb muscle mechanics in young adult rats aged 6–8 months and ‘early aged’ 24-month-old rats (Rattus norvegicus, Fischer 344 × Brown Norway crosses). Analyses of gaits and kinematics demonstrated that aged rats moved significantly more slowly, sustained longer hindlimb support durations, moved with a greater proportion of asymmetrical gaits, were more plantigrade, and moved with a more kyphotic spinal posture than the young rats. Additionally, the external mechanical energy profiles of the aged animals were variable across trials, whereas the younger rats moved predominantly with bouncing mechanics. In situ analyses of the ankle extensor/plantar flexor muscle group (soleus, plantaris, and medial and lateral gastrocnemii) revealed reduced maximum force generation with aging, despite minimal changes in muscle mass. The weakened muscles were implicated in the degradation of hindfoot posture, as well as variability in center-of-mass mechanics. These results demonstrate that the early stages of aging have consequences for whole-body performance, even before age-related loss of muscle mass begins.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3