Differential requirements for Smad4 in TGFβ-dependent patterning of the early mouse embryo

Author:

Chu Gerald C.12,Dunn N. Ray1,Anderson Dorian C.1,Oxburgh Leif1,Robertson Elizabeth J.1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge,MA 02138, USA

2. Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115,USA

Abstract

Genetic and biochemical data have identified Smad4 as a key intracellular effector of the transforming growth factor β (TGFβ superfamily of secreted ligands. In mouse, Smad4-null embryos do not gastrulate, a phenotype consistent with loss of other TGFβ-related signaling components. Chimeric analysis reveals a primary requirement for Smad4in the extra-embryonic lineages; however, within the embryo proper,characterization of the specific roles of Smad4 during gastrulation and lineage specification remains limited. We have employed a Smad4conditional allele to specifically inactivate the Smad4 gene in the early mouse epiblast. Loss of Smad4 in this tissue results in a profound failure to pattern derivatives of the anterior primitive streak, such as prechordal plate, node, notochord and definitive endoderm. In contrast to these focal defects, many well-characterized TGFβ- and Bmp-regulated processes involved in mesoderm formation and patterning are surprisingly unaffected. Mutant embryos form abundant extra-embryonic mesoderm, including allantois, a rudimentary heart and middle primitive streak derivatives such as somites and lateral plate mesoderm. Thus, loss of Smad4 in the epiblast results not in global developmental abnormalities but instead in restricted patterning defects. These results suggest that Smad4 potentiates a subset of TGFβ-related signals during early embryonic development, but is dispensable for others.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3