Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces

Author:

Drucker Eliot G.1,Lauder George V.2

Affiliation:

1. Washington Trout, PO Box 402, Duvall, WA 98019, USA

2. Museum of Comparative Zoology, Harvard University, 26 Oxford Street,Cambridge, MA 02138, USA

Abstract

SUMMARYIn this study, we examine the kinematics and hydrodynamics of the soft dorsal fin in a representative basal teleost, the rainbow trout(Oncorhynchus mykiss), during steady rectilinear locomotion at 0.5–2.0 body lengths (L) s–1 and during maneuvering. During steady swimming, dorsal fin height and sweep amplitude decrease with increasing speed. The dorsal fin wake, as viewed within a horizontal plane, consists of paired vortices on each side of the body (0.5 L s–1) or nearly linearly arrayed vortex centers above the body (1.0 L s–1) with central jet flows directed predominately laterally (lateral:thrust force ratio=5–6). At 2.0 L s–1, the dorsal fin is no longer recruited to add momentum to the wake. This pattern of decreasing involvement of the trout dorsal fin in thrust production with increasing speed contrasts with the results of our previous study of the soft dorsal fin of sunfish(Lepomis), which is hydrodynamically inactive at low speed and sheds a propulsive vortex wake at higher speed. Yawing maneuvers by trout involve unilateral production of a single vortex ring by the dorsal fin with a strong jet flow oriented almost directly laterally. During steady swimming,interception by the tail of the dorsal fin's vortical wake and the adipose fin's non-vortical (drag) wake is hypothesized as a mechanism for enhancing tail thrust. This study provides the first experimental evidence that the plesiomorphic soft dorsal fin of ray-finned fishes acts as an ancillary force generator during axial locomotion. We suggest that the distinction often made between median and paired fin (MPF) propulsion and body and caudal fin (BCF)propulsion in fishes obscures the important role of multiple propulsors acting in a coordinated fashion. Using a combination of anterior median fin oscillation and axial undulation, without continuous paired fin excursions,trout employ an `M–BCF' gait during steady swimming. The primarily lateral orientation of dorsal fin force in trout induces corresponding roll and yaw moments, which must be countered by forces from the caudal, anal and paired fins. Locomotion in trout therefore involves the simultaneous active use of multiple fins, presumably to maintain body stability in the face of environmental perturbations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

1. Akhtar, I. and Mittal, R. (2005). A biologically inspired computational study of flow past tandem flapping foils. AIAA J.4760,1-12.

2. Aleev, Y. G. (1969). Function and Gross Morphology in Fish. Jerusalem: Keter Press. (translated from the Russian by M. Raveh.)

3. Anderson, J. (1996). Vorticity control for efficient propulsion. PhD thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Cambridge, MA,USA.

4. Anderson, J. M., Streitlein, K., Barrett, D. S. and Triantafyllou, M. S. (1998). Oscillating foils of high propulsive efficiency. J. Fluid Mech.360, 41-72.

5. Arreola, V. I. and Westneat, M. W. (1996). Mechanics of propulsion by multiple fins: kinematics of aquatic locomotion in the burrfish (Chilomycterus schoepfi). Proc. R. Soc. Lond. B263,1689-1696.

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3