How does oestradiol influence the AVT/IT system in female round gobies during different reproductive phases?

Author:

Kalamarz-Kubiak Hanna1ORCID,Gozdowska Magdalena1,Guellard Tatiana1,Kulczykowska Ewa1

Affiliation:

1. Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland

Abstract

In this in vitro gradient perfusion study, we determined whether there is a functional relationship between oestradiol and the arginine vasotocin/isotocin (AVT/IT) system in the female round goby (Neogobius melanostomus). Brain explants were perfused in medium supplemented with 17β-oestradiol (E2) at doses mimicking the plasma levels of this hormone in nature during the spawning-capable phase and regressing phase. We aimed to establish which pathway, genomic or non-genomic, is involved in this mechanism in different reproductive phases. For this purpose, brain explants were perfused in medium supplemented with Fulvestrant (ICI 182.780) or Actinomycin D (Act D) separately or in combination with E2. The contents of AVT and IT in the perfusion media were determined using high-performance liquid chromatography (HPLC) with fluorescence and UV detection. During the spawning-capable phase, the effect of E2 on AVT release is mediated through oestrogen receptors (ERs) via both genomic and non-genomic pathways, while IT release is mediated through ERs via a genomic pathway only. In the regressing phase, release of both nonapeptides is mediated through ERs via a genomic pathway. These are the first studies presenting a feasible mechanism of oestradiol action on the AVT/IT system in female fish during different phases of the reproductive cycle.

Funder

Narodowe Centrum Nauki

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3