The Expression of Genetic Information: A Study with Hybrid Animal Cells

Author:

HARRIS H.1,SIDEBOTTOM E.1,GRACE D. M.1,BRAMWELL M. E.1

Affiliation:

1. Sir William Dunn School of Pathology, University of Oxford, England

Abstract

When the nucleus of a hen erythrocyte is introduced into the cytoplasm of a human or mouse cell in culture, it resumes the synthesis of RNA. The reactivated erythrocyte nucleus undergoes great enlargement, but it does not, for at least 2 or 3 days, develop nucleoli which can be discerned under the light microscope. During this period, the heterokaryon, although it may contain several active erythrocyte nuclei, does not synthesize any hen-specific surface antigens; and the hen-specific antigens introduced into the surface of the heterokaryon by the process of cell fusion are eliminated. But when, later, the erythrocyte nuclei do develop nucleoli, hen-specific antigens reappear on the surface of the heterokaryon and progressively accumulate. Before developing nucleoli, the erythrocyte nuclei synthesize little, if any, normal 28 S or 16 S RNA; but they do synthesize large amounts of the RNA which shows polydisperse sedimentation in conventional sucrose density gradients. Autoradiographic studies involving the use of a microbeam of ultraviolet light show, however, that this ‘polydisperse’ RNA is not transferred to the cytoplasm of the cell in detectable amounts so long as the erythrocyte nucleus lacks a definitive nucleolus. The inability of the erythrocyte nucleus at this stage to determine the synthesis of hen-specific surface antigens is thus attributable to the fact that it fails to transfer the RNA made on its chromosomes to the cytoplasm of the cell. When the erythrocyte nuclei develop nucleoli, however, the RNA which they make is transferred to the cytoplasm of the cell, and the synthesis of hen-specific surface antigens then begins. These experiments suggest that the nucleolus may play a decisive role in the transfer of information from nucleus to cytoplasm. The possible nature of this role is discussed.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diferenciação Celular: Um Problema em Oncologia;Revista Brasileira de Cancerologia;2023-08-11

2. Reprogramming Mediated by Cell Fusion Technology;International Review of Cell and Molecular Biology;2011

3. ULTRASTRUCTURAL STUDY OF HETEROKARYONS FROM ROUS RAT SARCOMA CELLS AND NORMAL CHICKEN CELLS;Acta Pathologica Microbiologica Scandinavica Section A Pathology;2009-08-15

4. The Activation of Fetal Lymphocytes;Scandinavian Journal of Haematology;2009-04-24

5. Cell Surface Movements Related to Cell Locomotion;Novartis Foundation Symposia;2008-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3