Structural-proliferative units and organ growth: effects of insulin-like growth factor 2 on the growth of colon and skin

Author:

Bennett William R.1,Crew Tracey E.2,Slack Jonathan M. W.2,Ward Andrew2

Affiliation:

1. Present address: UK Centre for Tissue Engineering, Room 3.446, Stopford Building, Biological Sciences, University of Manchester, Manchester M13 9PT,UK

2. Center for Regenerative Medicine, Department of Biology and Biochemistry,University of Bath, Bath BA2 7AY, UK

Abstract

Many epithelial renewal tissues in vertebrates are organised into structural-proliferative units. We have examined the effect of IGF2 dose on the structure of structural-proliferative units in skin and colon. The mouse strains used were the Igf2 knockout, wild type and K:Igf2, a transgenic in which Igf2 is overexpressed under control of a keratin promoter. For both skin and colon, the histological organisation of structural-proliferative units was unaltered with increasing IGF2 dose,although there was a higher fraction of dividing cells in the proliferative compartment. In the colon an increase in IGF2 dose increases the overall area of the epithelium. This is due to an increase in the number of crypts with no change of cell size or of crypt area. Growth stimulation appears to be due to a reduction in the duration of crypt fission. The conclusion is that the IGF2 pathway can stimulate the multiplication of colonic crypts independently of stimulating increased cell proliferation. The results for the skin are consistent with this. An increase of IGF2 dose increases the proportion of dividing cells in the basal layer, the thickness of the epidermis and the total area of the epidermis. By comparison with Drosophila, these results show no effects on cell size, but do show the possibility of inducing disproportionate growth. These differences may represent properties of the SPU organisation that is characteristic of vertebrate tissues.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3