Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurones

Author:

Burrows M.

Abstract

1. The interneurones which make widespread connexions with flight motoneurones also synapse upon ventilatory motoneurones so that in all 50 motoneurones receive synapses. They influence three aspects of ventilation; (a) the closing and opening movements of the thoracic spiracles, (b) some aspects of abdominal pumping movements and (c) the recruitment of some motoneurones controlling head pumping. 2. The two closer motoneurones of a particular thoracic spiracle receive the same excitatory synaptic inputs (EPSPs) during expiration. The EPSPs match those in appropriate flight motoneurones. 3. The closer motoneurones of each thoracic spiracle whose somata are in the pro-, meso- or metathoracic ganglia all receive the same excitatory synaptic inputs. These inputs are an adequate explanation of the pattern of spikes in the closer motoneurones. Both the slow ventilatory and fast rhythms of synaptic potentials are expressed as spikes; the slow as the overall expiratory burst of spikes and the fast as the groups of spikes within that burst. This establishes a ventilatory function for the interneurones. All thoracic closer motoneurones therefore receive the same excitatory commands which will tend to synchronize the movements of each spiracle. 4. Spiracular opener motoneurones are inhibited during expiration, their IPSPs matching the EPSPs in flight or closer motoneurones. Therefore the interneurones have reciprocal effects on the antagonistic motoneurones of the spiracles. 5. The interneurones synapse upon some motoneurones which control the pumping movements of the abdomen and which have their somata in the metathoracic or first unfused abdominal ganglion. Motoneurones in four separate ganglia therefore receive inputs from these interneurones. 6. The interneurones also synapse upon motoneurones which control an auxiliary form of ventilation, head pumping.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3