Abstract
1. The interneurones which make widespread connexions with flight motoneurones also synapse upon ventilatory motoneurones so that in all 50 motoneurones receive synapses. They influence three aspects of ventilation; (a) the closing and opening movements of the thoracic spiracles, (b) some aspects of abdominal pumping movements and (c) the recruitment of some motoneurones controlling head pumping. 2. The two closer motoneurones of a particular thoracic spiracle receive the same excitatory synaptic inputs (EPSPs) during expiration. The EPSPs match those in appropriate flight motoneurones. 3. The closer motoneurones of each thoracic spiracle whose somata are in the pro-, meso- or metathoracic ganglia all receive the same excitatory synaptic inputs. These inputs are an adequate explanation of the pattern of spikes in the closer motoneurones. Both the slow ventilatory and fast rhythms of synaptic potentials are expressed as spikes; the slow as the overall expiratory burst of spikes and the fast as the groups of spikes within that burst. This establishes a ventilatory function for the interneurones. All thoracic closer motoneurones therefore receive the same excitatory commands which will tend to synchronize the movements of each spiracle. 4. Spiracular opener motoneurones are inhibited during expiration, their IPSPs matching the EPSPs in flight or closer motoneurones. Therefore the interneurones have reciprocal effects on the antagonistic motoneurones of the spiracles. 5. The interneurones synapse upon some motoneurones which control the pumping movements of the abdomen and which have their somata in the metathoracic or first unfused abdominal ganglion. Motoneurones in four separate ganglia therefore receive inputs from these interneurones. 6. The interneurones also synapse upon motoneurones which control an auxiliary form of ventilation, head pumping.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献