Sound production in piranhas is associated with modifications of the spinal locomotor pattern

Author:

Banse Marine1ORCID,Chagnaud Boris P.23ORCID,Huby Alessia1ORCID,Parmentier Eric1ORCID,Kéver Loïc12ORCID

Affiliation:

1. Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium

2. Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany

3. Institute for Biology, Karl-Franzens-University Graz, 8010 Graz, Austria

Abstract

ABSTRACT In piranhas, sounds are produced through the vibration of the swim bladder wall caused by the contraction of bilateral sonic muscles. Because they are solely innervated by spinal nerves, these muscles likely evolved from the locomotor hypaxial musculature. The transition from a neuromuscular system initially shaped for slow movements (locomotion) to a system that requires a high contraction rate (sound production) was accompanied with major peripheral structural modifications, yet the associated neural adjustments remain to this date unclear. To close this gap, we investigated the activity of both the locomotor and the sonic musculature using electromyography. The comparison between the activation patterns of both systems highlighted modifications of the neural motor pathway: (1) a transition from a bilateral alternating pattern to a synchronous activation pattern, (2) a switch from a slow- to a high-frequency regime, and (3) an increase in the synchrony of motor neuron activation. Furthermore, our results demonstrate that sound features correspond to the activity of the sonic muscles, as both the variation patterns of periods and amplitudes of sounds highly correspond to those seen in the sonic muscle electromyograms (EMGsonic). Assuming that the premotor network for sound production in piranhas is of spinal origin, our results show that the neural circuit associated with spinal motor neurons transitioned from the slow alternating pattern originally used for locomotion to a much faster simultaneous activation pattern to generate vocal signals.

Funder

Fonds De La Recherche Scientifique

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3