Evaluation of the different forces brought into play during tube foot activities in sea stars

Author:

Hennebert Elise1,Haesaerts Delphine2,Dubois Philippe2,Flammang Patrick1

Affiliation:

1. Université de Mons – UMONS, Académie Universitaire Wallonie-Bruxelles, Laboratoire de Biologie Marine, Mons, Belgium

2. Université Libre de Bruxelles, Académie Universitaire Wallonie-Bruxelles, Laboratoire de Biologie Marine, Bruxelles, Belgium

Abstract

SUMMARYSea star tube feet consist of an enlarged and flattened distal extremity (the disc), which makes contact with the substratum, and a proximal contractile cylinder (the stem), which acts as a tether. In this study, the different forces brought into play during tube foot functioning were investigated in two related species. The tube feet of Asterias rubens and Marthasterias glacialis attach to glass with a similar mean tenacity (0.24 and 0.43 MPa, respectively), corresponding to an estimated maximal attachment force of 0.15 and 0.35 N. The contraction force of their retractor muscle averages 0.017 N. The variation of the retractor muscle contraction with its extension ratio follows a typical bell-shaped length–tension curve in which a maximal contraction of approximately 0.04 N is obtained for an extension ratio of approximately 2.3 in both sea star species. The tensile strength of the tube foot stem was investigated considering the two tissues that could assume a load-bearing function, i.e. the retractor muscle and the connective tissue. The latter is a mutable collagenous tissue presenting a fivefold difference in tensile strength between its soft and stiff state. In our experiments, stiffening was induced by disrupting cell membranes or by modifying the ionic composition of the bathing solution. Finally, the force needed to break the tube foot retractor muscle was found to account for 18–25% of the tube foot total breaking force, showing that, although the connective tissue is the tissue layer that supports most of the load exerted on the stem, the contribution of the retractor muscle cannot be neglected in sea stars. All these forces appear well-balanced for proper functioning of the tube feet during the activities of the sea star. They are discussed in the context of two essential activities: the opening of bivalve shells and the maintenance of position in exposed habitats.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

1. Cellular physiology of skeletal, cardiac and smooth muscle;Apkon,2003

2. Influence of salinity on the ability of starfishes Asterias rubens L. to attach to substrate;Berger;Biologiya Morya,1996

3. Some properties of the action potentials conducted in the spines of the sea urchin Diadema antillarum;Berrios;Comp. Biochem. Physiol.,1985

4. The mechanical properties of the autotomy tissues of the holothurian Eupentacta quinquesemita and the effects of certain physico-chemical agents;Byrne;J. Exp. Biol.,1985

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3