Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway

Author:

Wang Tsu-Wei1,Zhang Helen1,Parent Jack M.1

Affiliation:

1. Department of Neurology and Program for Neuroscience, University of Michigan Medical Center, Ann Arbor, MI 48109-0585, USA

Abstract

Neurogenesis persists throughout life in the rodent subventricular zone(SVZ)-olfactory bulb pathway. The molecular regulation of this neurogenic circuit is poorly understood. Because the components for retinoid signaling are present in this pathway, we examined the influence of retinoic acid (RA)on postnatal SVZ-olfactory bulb neurogenesis. Using both SVZ neurosphere stem cell and parasagittal brain slice cultures derived from postnatal mouse, we found that RA exposure increased neurogenesis by enhancing the proliferation and neuronal differentiation of forebrain SVZ neuroblasts. The RA precursor retinol had a similar effect, which was reversed by treating cultures with the RA synthesis inhibitor disulfiram. Electroporation of dominant-negative retinoid receptors into the SVZ of slice cultures also blocked neuroblast migration to the olfactory bulb and altered the morphology of the progenitors. Moreover, the administration of disulfiram to neonatal mice decreased in vivo cell proliferation in the striatal SVZ. These results indicate that RA is a potent mitogen for SVZ neuroblasts and is required for their migration to the olfactory bulb. The regulation of multiple steps in the SVZ-olfactory bulb neurogenic pathway by RA suggests that manipulation of retinoid signaling is a potential therapeutic strategy to augment neurogenesis after brain injury.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3