Author:
Heinrich Stephanie,Windecker Hanna,Hustedt Nicole,Hauf Silke
Abstract
The spindle assembly checkpoint (SAC) blocks entry into anaphase until all chromosomes have stably attached to the mitotic spindle through their kinetochores. The checkpoint signal originates from unattached kinetochores, where SAC proteins enrich. Whether the enrichment of all SAC proteins is crucial for SAC signalling is unclear. Here we provide evidence that in fission yeast, recruitment of the kinase Mph1 is of vital importance for a stable SAC arrest. An Mph1 mutant that eliminates kinetochore enrichment abolishes SAC signalling, whereas forced recruitment of this mutant to kinetochores restores SAC signalling. In bub3Δ cells, the SAC is functional with only Mph1 and the Aurora kinase Ark1, but no other SAC proteins, enriched at kinetochores. We analysed the network of dependencies for SAC protein localization to kinetochores and identify a three-layered hierarchy with Ark1 and Mph1 on top, Bub1 and Bub3 in the middle, and Mad3 as well as the Mad1-Mad2 complex at the lower end of the hierarchy. If Mph1 is artificially recruited to kinetochores, Ark1 becomes dispensable for SAC activity. Our results highlight the critical role of Mph1 at kinetochores and suggest that the Mad1-Mad2 complex does not necessarily need to enrich at kinetochores for functional SAC signalling.
Publisher
The Company of Biologists
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献