The novel conserved mitochondrial inner-membrane protein MTGM regulates mitochondrial morphology and cell proliferation

Author:

Zhao Jian1,Liu Tong1,Jin Shao-Bo2,Tomilin Nikolay3,Castro Juan1,Shupliakov Oleg3,Lendahl Urban2,Nistér Monica1

Affiliation:

1. Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden

2. Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden

3. Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden

Abstract

Although several proteins involved in mediating mitochondrial division have been reported in mammals, the mechanism of the fission machinery remains to be elucidated. Here, we identified a human nuclear gene (named MTGM) that encodes a novel, small, integral mitochondrial inner-membrane protein and shows high expression in both human brain tumor cell lines and tumor tissues. The gene is evolutionarily highly conserved, and its orthologs are 100% identical at the amino acid level in all analyzed mammalian species. The gene product is characterized by an unusual tetrad of the GxxxG motif in the transmembrane segment. Overexpression of MTGM (mitochondrial targeting GxxxG motif) protein results in mitochondrial fragmentation and release of mitochondrial Smac/Diablo to the cytosol with no effect on apoptosis. MTGM-induced mitochondrial fission can be blocked by a dominant negative Drp1 mutant (Drp1-K38A). Overexpression of MTGM also results in inhibition of cell proliferation, stalling of cells in S phase and nuclear accumulation of γ-H2AX. Knockdown of MTGM by RNA interference induces mitochondrial elongation, an increase of cell proliferation and inhibition of cell death induced by apoptotic stimuli. In conclusion, we suggest that MTGM is an integral mitochondrial inner-membrane protein that coordinately regulates mitochondrial morphology and cell proliferation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3