Search for hepatopancreatic ecdysteroid-responsive genes during the crayfish molt cycle: from a single gene to multigenicity

Author:

Shechter Assaf1,Tom Moshe2,Yudkovski Yana2,Weil Simy1,Chang Sharon A.3,Chang Ernest S.3,Chalifa-Caspi Vered4,Berman Amir45,Sagi Amir14

Affiliation:

1. Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel

2. Israel Oceanographic and Limnological Research, Tel-Shikmona, PO Box 8030,Haifa 31080, Israel

3. Bodega Marine Laboratory, University of California-Davis, PO Box 247,Bodega Bay, CA 94923, USA

4. National Institute for Biotechnology in the Negev, Ben-Gurion University,PO Box 653, Beer-Sheva 84105, Israel

5. Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel

Abstract

SUMMARY The expression of the vitellogenin gene of the red-claw crayfish Cherax quadricarinatus (CqVg) was previously demonstrated in male crayfish during an endocrinologically induced molt cycle. The hypothesis that this expression is under the direct control of ecdysteroids was tested in this study both in vivo and in vitro. Unlike vitellogenin of insects, CqVg was not found to be ecdysteroid-responsive. Thus, a multigenic approach was employed for the identification of other hepatopancreatic ecdysteroid-responsive genes by a cDNA microarray. For the purposes of this study, a multi-parametric molt-staging technique, based on X-ray detection of gastrolith growth, was developed. To identify ecdysteroid-responsive genes during premolt, the molt cycle was induced by two manipulations, 20-hydroxyecdysone administration and X-organ–sinus gland complex removal; both resulted in significant elevation of ecdysteroids. Two clusters of affected genes (129 and 122 genes, respectively) were revealed by the microarray. It is suggested that only genes belonging to similarly responsive (up- or downregulated) gene clusters in both manipulations (102 genes) could be considered putative ecdysteroid-responsive genes. Some of these ecdysteroid-responsive genes showed homology to genes controlling chitin metabolism, proteases and other cellular activities, while 56.8% were unknown. The majority of the genes were downregulated, presumably by an energetic shift of the hepatopancreas prior to ecdysis. The effect of 20-hydroxyecdysone on representative genes from this group was confirmed in vitro using a hepatopancreas tissue culture. This approach for ecdysteroid-responsive gene identification could also be implemented in other tissues for the elucidation of ecdysteroid-specific signaling pathways during the crustacean molt cycle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3