Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells

Author:

Pillai Viju Vijayan1,Koganti Prasanthi P.1,Kei Tiffany G.1,Gurung Shailesh1,Butler W. Ronald1,Selvaraj Vimal1ORCID

Affiliation:

1. Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA

Abstract

ABSTRACT Although derivation of naïve bovine embryonic stem cells is unachieved, the possibility for generation of bovine induced pluripotent stem cells (biPSCs) has been generally reported. However, attempts to sustain biPSCs by promoting self-renewal have not been successful. Methods established for maintaining murine and human induced pluripotent stem cells (iPSCs) do not support self-renewal of iPSCs for any bovid species. In this study, we examined methods to enhance complete reprogramming and concurrently investigated signaling relevant to pluripotency of the bovine blastocyst inner cell mass (ICM). First, we identified that forced expression of SV40 large T antigen together with the reprogramming genes (OCT4, SOX2, KLF4 and MYC) substantially enhanced the reprogramming efficacy of bovine fibroblasts to biPSCs. Second, we uncovered that TGFβ signaling is actively perturbed in the ICM. Inhibition of ALK4/5/7 to block TGFβ/activin/nodal signaling together with GSK3β and MEK1/2 supported robust in vitro self-renewal of naïve biPSCs with unvarying colony morphology, steady expansion, expected pluripotency gene expression and committed differentiation plasticity. Core similarities between biPSCs and stem cells of the 16-cell-stage bovine embryo indicated a stable ground state of pluripotency; this allowed us to reliably gain predictive understanding of signaling in bovine pluripotency using systems biology approaches. Beyond defining a high-fidelity platform for advancing biPSC-based biotechnologies that have not been previously practicable, these findings also represent a significant step towards understanding corollaries and divergent aspects of bovine pluripotency. This article has an associated First Person interview with the joint first authors of the paper.

Funder

College of Agriculture and Life Sciences, Cornell University

U.S. Department of Agriculture

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3