Nucleolar activation and vacuolation in embryo radicle cells during early germination

Author:

Deltour R.,de Barsy T.

Abstract

The activation of the nucleolus of primary root cells of Sinapis alba embryos during the first 72 h of germination was monitored by autoradiographic, ultrastructural and microstereological methods. Autoradiographs showed that within 48 h, the nucleolus progressively resumed the capacity to synthesize pre-rRNA molecules at a high rate. In quiescent embryos the nucleolus was small, compact and composed of mixed granular and fibrillar components. Within the first 6 h of germination a strong nucleolar vacuolation occurred, accompanied by a decrease in the volume of the nucleolus and a concomitant high loss of its ribonucleoproteins (RNPs). From 6 to 24 h, nucleolar vacuolation decreased to reach a stable level. During this last period the volume of the nucleolus increased by the accumulation of the fibrillar component resulting from a slow pre-rRNA processing. At 24 h the nucleolus presented a predominantly fibrillar texture. After 24 h, nucleolus growth continued but was due to the accumulation of the granular component, indicating that pre-rRNA processing occurred at a higher rate than during the first day of germination. From 48 h the nucleolus was composed of well-delineated granular and fibrillar areas. Dense nucleolus-associated chromatin as well as fibrillar centres were always observed during the whole period of observation. In addition, previous studies on the nucleolus of radicle cells of Zea mays embryo during early germination were completed by studying changes in the nucleolar volume and in the density of pre-ribosomal subunits of the granular component. On the basis of the data obtained with both species we suggest that a possible function for the nucleolar vacuoles is the increase in the nucleolus-nucleoplasm exchange interface in response to a rapid increase in the output of nucleolar RNPs. The nucleolar growth pattern during early germination is also discussed.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3