Optomotor steering and flight control requires a specific sub-section of the compound eye in the hawkmoth, Manduca sexta

Author:

Copley Sean1,Parthasarathy Kalyanasundaram1,Willis Mark A.1ORCID

Affiliation:

1. Department of Biology, Case Western Reserve University, Cleveland Ohio, 44106, USA

Abstract

While tracking odor plumes, male hawkmoths use optic flow cues to stabilize their flight movements with respect to their environment. We studied the responses of freely flying moths tracking odor plumes in a laboratory wind tunnel and tethered moths in an optomotor flight simulator to determine the locations on the compound eye on which critical optic flow cues are detected. In these behavioral experiments, we occluded specific regions of the compound eye and systematically examined the moths’ behavior for specific deficits in optic flow processing. Freely flying moths with the dorsal half of the compound eye painted were unable to maintain stable flight and track the wind-borne odor plume. However, the plume tracking performance of moths with the ventral half of their compound eyes painted was the same as unpainted controls. In a matched set of experiments, we presented tethered moths with moving vertically-oriented sinusoidal gratings and found that individuals with their eyes unpainted, ventrally-painted, and medially-painted all responded by attempting optomotor-driven turns in the same proportion. In contrast, individuals with their compound eyes, dorsally-painted, laterally-painted, and totally-painted showed no optomotor turning response. We decreased the contrast of the visual stimulus and found that this relationship was consistent down to a contrast level of 2.5%. We conclude that visual input from the dorso-lateral region of the animal's visual world is critical for successful maintenance of flight stability and that this species’ visual environment must meet or exceed a contrast ratio of 2.5% to support visual flight control.

Funder

Air Force Office of Scientific Research

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference48 articles.

1. Regional specialization in the eye of the sphingid moth Manduca sexta: blue sensitivity of the ventral retina;Bennett;Vis. Neurosci.,1997

2. Feeding behavior in the nocturnal moth Manduca sexta is mediated mainly by blue receptors, but where are they located in the retina?;Cutler;J. Exp. Biol.,1995

3. Optomotor control of speed and height by free-flying Drosophila;David;J. Exp. Biol.,1979

4. Compensation for height in the control of groundspeed by Drosophila in a new, “barber's pole” wind tunnel;David;J. Comp. Physiol. A,1982

5. Insect photoreceptor: an internal ocellus is present in sphinx moths;Eaton;Science,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3