ER storage diseases: a role for ERGIC-53 in controlling the formation and shape of Russell bodies

Author:

Mattioli L.1,Anelli T.23,Fagioli C.2,Tacchetti C.1,Sitia R.23,Valetti C.1

Affiliation:

1. MicroSCoBiO Research Center and IFOM Center of Cell Oncology and Ultrastructure, Department of Experimental Medicine, University of Genova, Italy

2. DiBiT-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy

3. Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy

Abstract

Owing to the impossibility of reaching the Golgi for secretion or the cytosol for degradation, mutant Ig-μ chains that lack the first constant domain (μΔCH1) accumulate as detergent-insoluble aggregates in dilated endoplasmic reticulum cisternae, called Russell bodies. The presence of similar structures hallmarks many ER storage diseases, but their pathogenic role(s) remain obscure. Exploiting inducible cellular systems, we show here that Russell bodies form when the synthesis of μΔCH1 exceeds the degradation capacity. Condensation occurs in different sub-cellular locations, depending on the interacting molecules present in the host cell: if Ig light chains are co-expressed, detergent-insoluble μΔCH1-light chain oligomers accumulate in large ribosome-coated structures (rough Russell bodies). In absence of light chains, instead, aggregation occurs in smooth tubular vesicles and is controlled by N-glycan-dependent interactions with ER-Golgi intermediate compartment 53 (ERGIC-53). In cells containing smooth Russell bodies, ERGIC-53 co-localizes with μΔCH1 aggregates in a Ca2+-dependent fashion. Our findings identify a novel ERGIC-53 substrate, and indicate that interactions with light chains or ERGIC-53 seed μΔCH1 condensation in different stations of the early secretory pathway.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3