In situ hybridization reveals co-expression of embryonic and adult alpha globin genes in the earliest murine erythrocyte progenitors

Author:

Leder A.1,Kuo A.1,Shen M.M.1,Leder P.1

Affiliation:

1. Department of Genetics, Harvard Medical School, Boston, MA.

Abstract

Murine erythropoiesis begins with the formation of primitive red blood cells in the blood islands of the embryonic yolk sac on day 7.5 of gestation. By analogy to human erythropoiesis, it has been thought that there is a gradual switch from the exclusive expression of the embryonic alpha-like globin (zeta) to the mature adult form (alpha) in these early mouse cells. We have used in situ hybridization to assess expression of these two globin genes during embryonic development. In contrast to what might have been expected, we find that there is simultaneous expression of both zeta and alpha genes from the very onset of erythropoiesis in the yolk sac. At no time could we detect expression of embryonic zeta globin mRNA without concomitant expression of adult alpha globin mRNA. Indeed, adult alpha transcripts exceed those of embryonic zeta in the earliest red cell precursors. Moreover, the pattern of hybridization reveals co-expression of both genes within the same cells. Even in the fetal liver, which supersedes the yolk sac as the major site of murine fetal erythropoiesis, there is a brief co-expression of zeta and alpha genes followed by the exclusive expression of the adult alpha genes. These data indicate an important difference in hematopoietic ontogeny between mouse and that of human, where zeta expression precedes that of alpha. In addition to resolving the embryonic expression of these globin genes, our results suggest that the embryonic alpha-like globin gene zeta may be physiologically redundant, even during the earliest stages of embryonic development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reactive Oxygen Species in Glioma;Handbook of Oxidative Stress in Cancer: Therapeutic Aspects;2022

2. Reactive Oxygen Species in Glioma;Handbook of Oxidative Stress in Cancer: Therapeutic Aspects;2021-12-22

3. Discovering a sparse set of pairwise discriminating features in high-dimensional data;Bioinformatics;2020-07-30

4. Developmental Erythropoiesis;Fetal and Neonatal Physiology;2011

5. Therapeutic Applications of Human Embryonic Stem Cells;Human Stem Cell Technology and Biology;2010-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3